From Quinidine to New Enantiopure Materials—Tricyclic Allylic *N,O*-Acetals and a Stereospecific, One-Pot Conversion of 1,2-Secondary, Tertiary Diols into Spiroepoxides

Cornelius von Riesen, Peter G. Jones and H. M. R. Hoffmann*

Abstract: Hydrobromination of quinidine (1) with fuming HBr furnished diastereomeric secondary bromides 2a and 2b in 82% yield. After acetylation the resulting bromides 2a-Ac and 2b-Ac could be separated and converted stereospecifically into ethylidene rubanes (Z)-4 and (E)-4, respectively. cis-Dihydroxylation of (Z)-olefin 4 with OsO₄ was shown to be feasible by two catalytic variants, giving the two diastereomeric diols 5a and 5b, separable by chromatography. A simple one-

pot procedure was developed for converting the sterically hindered 1,2-secondary, tertiary diols stereospecifically into spiroepoxides $(5a \rightarrow 6a$ -Ac; $5b \rightarrow 6b$ -Ac). Our procedure involves overall inversion of configuration. The procedure

Keywords

chemoselectivity • cinchona alkaloids • clathrates • osmium tetroxide • spiro compounds complements the Kolb-Sharpless route to epoxides from 1,2-disecondary diols with overall retention of configuration. The other two diastereomeric spiroepoxides $\mathbf{6c}$ and $\mathbf{6d}$ were prepared in one pot under different conditions (chloramine T, then alkali). Two unprecedented tricyclic allylic N,O-acetals (Z)-7 and (E)-7 were also obtained. The structure of spiroepoxide $\mathbf{6c}$ (as a $\mathrm{CH}_2\mathrm{Cl}_2$ monosolvate) and of tricyclic olefinic N,O-acetal (E)-7 was corroborated by X-ray crystallography.

Introduction

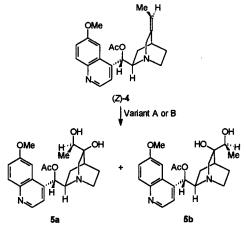
Cinchona alkaloids are produced on a large scale worldwide (300 – 500 tons per annum) by extraction from the bark of various cinchona species, now widely cultivated commercially.[1] Quinidine sulfate is currently available at around 130 dollars per kilogram. About 60% of the alkaloid goes into the production of pharmaceuticals. The bulk of the remaining 40% is used in the food industry as the bitter principle of soft drinks such as bitter lemon and also tonic water (the bitter taste of which can be partially disguised by gin!). A quinine-containing extract from the powdered bark of the cinchona tree has served for the treatment of malaria since at least the 17th century. [2] Quinidine is an antimalarial, which is still in use against chloroquin-resistant infections, and and also a cardiac depressant^[3] (antiarrhythmic). Derivatives of cinchona alkaloids (cinchonicine and quinicine) have been used as chiral auxiliaries for the first separation of diastereomeric salts by Pasteur.[4] Quinicine ("quinotoxine") is a key intermediate and relais of the first total synthesis of quinine and quinidine by Woodward and Doering. [5] The cinchona alkaloids also serve as highly versatile auxiliaries in asymmetric synthesis, including enantioselective Diels-Alder reactions, [6] [2+2] cycloadditions, [7] dehydrohalogenations,^[8] hydrocyanation,^[9] SmI₂-mediated reductions,^[10] Michael additions^[11] and in the Sharpless AD reaction.^[12] Metabolites of quinidine have been investigated from the point of view of medicinal activity and are used in the clinic. A *Chemical Abstracts* search for the period 1987–1991 indicates some 2145 publications, which have appeared in a diverse range of journals, especially those of applied medicine and pharmacology.^[13]

Results and Discussion

Isomerization of Quinidine to Trisubstituted Olefins (Z)-4 and (E)-4: Metabolism of quinidine proceeds at several sites and may involve oxygenation of the vinyl side chain. With a view to preparing new metabolites and enantiopure materials we have optimized a simple functionalization and degradation procedure of the vinyl group. Hydrobromination of 1 with 48% HBr^[14] did not go to completion, undoubtedly owing to competing protonation of basic sites within the molecule. However, in fuming 62% HBr (ca. 6 equiv) the quinidine dissolved completely to give a clear, homogeneous solution and afforded the desired diastereoisomeric secondary bromides 2a and 2b, and seven-membered cyclic ethers 3a and 3b as by-products (Scheme 1).[15] Separation of polar amino alcohols 2a and 2b was not straightforward. After a standard conversion into the acetylated derivatives 2a-Ac and 2b-Ac, a simple column chromatographic separation was possible (MTB ether/ methanol). Elimination of HBr from the single diastereomers was stereospecific (i.e., antiperiplanar). Thus, bromide 2a-Ac furnished olefin (Z)-4, whereas diastereomeric 2b-Ac furnished olefin (E)-4. From a preparative standpoint, protection

 ^[*] Prof. H. M. R. Hoffmann, Dr. C. von Riesen⁽⁺⁾
 Department of Organic Chemistry, University of Hannover
 Schneiderberg 1 B, D-30167 Hannover (Germany)
 Fax: Int. code +(511)762-3011
 Prof. P. G. Jones
 Department of Inorganic and Analytical Chemistry
 Hagenring 30, D-38106 Braunschweig (Germany)

^[*] New address: Quinine Factory Buchler GmbH Harxbütteler Str. 3, D-38110 Braunschweig (Germany)

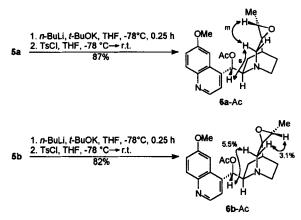

Scheme 1. Stereospecific elimination from 2a and 2b to give (E)- and (Z)-trisubstituted rubane olefins (E)-4 and (Z)-4 (the numbering of the quinidine skeleton follows convention; cf. X-ray crystal structures in Figs. 1 and 2).

3h

of the weakly acidic OH group by acetylation improved the yield of the base-mediated elimination decisively.

Previously, the mixture of olefins (E)-4 and (Z)-4 was dihydroxylated with almost stoichiometric quantities of OsO₄. [14] However, because of the toxicity and expense of OsO4, it is mandatory that the dihydroxylation be carried out by a catalytic variant. Under normal conditions OsO₄ is coordinated to the bridgehead nitrogen and thus inactivated. Using DABCO (1,4diazabicyclo[2,2,2]octane) as a coordination ligand for OsO₄ and also diastereomerically pure (Z)-configurated ethylidene rubane (Z)-4, we were able to prepare the diols 5a and 5b with catalytic amounts of OsO₄ under homogeneous conditions (variant A). A two-phase system (variant B) was modelled on the protocol of Sharpless, [12] however without the dihydroquinineor dihydroquinidine-derived chiral ligand. Under two-phase conditions, attack of the sterically more accessible face of the π bond dominated by a factor of 2.4:1 (Table 1). Thus, the dihydroxylation is substrate-controlled (s.c.) and syn (see Scheme 7 below).

The transformation of diol **5a** as well as diol **5b** into spiroe-poxides **6a**—Ac and **6b**—Ac, respectively, was accomplished by a stereoselective and also chemoselective tosylation—cyclization procedure. Under standard conditions (TsCl, NEt₃ or pyridine) no reaction of the diols was observed. Deprotonation with *n*-butyllithium and addition of tosyl chloride was also unsatisfactory, giving only some spiroepoxide and recovered diol. Treat-



Scheme 2. Synthesis of diastereomeric diols 5a and 5b by cis-dihydroxylation of (Z)-configurated ethylidene rubane in the presence of catalytic OsO₄. Variant A: OsO₄, NMO, DABCO, THF/H₂O, RT, 7 d. Variant B: K_3 [Fe(CN)₆], OsO₄, K_2 CO₃, tBuOH/H₂O, RT, 3 h.

Table 1. Dihydroxylation of (Z)-4 (see Scheme 2).

	OsO ₄	Time	Yield [%]	5a:5b
variant A	0.01 equiv	7 d	84	1.2:1
variant B	0.01 equiv	3 h	94	2.4:1

ment of the diol with 2 equivalents of n-butyllithium and 2 equivalents of potassium t-butoxide in THF at $-78\,^{\circ}$ C, followed by addition of tosyl chloride in THF at $-78\,^{\circ}$ C, made an immediate difference. The reaction mixture was allowed to slowly reach RT and provided the desired spiroepoxides $\mathbf{6a}$ -Ac and $\mathbf{6b}$ -Ac in a clean, stereospecific reaction (Scheme 3). The (Z)-configurated methyl group of the starting olefin (Z)-4 (which points towards the reader) points away from the reader in the final spiroepoxides $\mathbf{6a}$ and $\mathbf{6b}$. Inversion of configuration at the secondary carbon was put beyond doubt by NOE.

Scheme 3. Stereospecific conversion of diols 5a and 5b into spiroepoxides 6a-Ac and 6b-Ac, respectively.

Spiroepoxides 6a and 6b are readily and individually available. In order to prepare the two "missing" stereoisomeric spiroepoxides 6c and 6d from the same (Z)-olefinic precursor (Z)-4, the mechanism of epoxidation was changed. In fact, treatment of (Z)-4 with chloramine T (TsNCl⁻Na⁺) in water/acetone and sulfuric acid (1 equiv of acid per chloramine T)

Quinidine Derivatives 673–679

followed by addition of K_2CO_3 provided not only the desired spiroepoxides **6c** and **6d**, but also the new oxazatricyclic olefins (Z)-7 and (E)-7 in a simple, one-pot procedure (Scheme 4). The allylic N,O-acetals are stabilized on stereoelectronic grounds: The newly formed C-O bond and the lone pair of the bridgehead nitrogen atom are nearly orthogonal. C-O bond cleavage with formation of an iminium ion is forbidden by the Bredt rule.

Scheme 4. One-pot preparation of the two "missing" stereoisomeric spiroepoxides 6c and 6d from olefin (Z)-4, and formation of unprecedented tricyclic allylic N, O-acetals (Z)-7 and (E)-7.

C,H analyses for spiroepoxide 6c obtained from CH₂Cl₂ were completely wrong (calcd. C 70.55, H 7.11, N 8.23; found C 58.33, H 6.04, N 6.64), although spectroscopic data (¹H, ¹³C, HH COSY, NOE and HRMS) were in complete agreement with the assigned structure. Slow evaporation of a dichloromethane solution of 6c at room temperature provided single crystals suitable for X-ray crystallography (Fig. 1, top). We were surprised to find that volatile CH₂Cl₂ (b.p. 40.8 °C) was stoichiometrically encapsulated in the crystal and only slowly lost to the atmosphere (only with a resulting collapse of the crystal lattice). Figure 1 (bottom) shows a packing diagram. Apart from a conventional intermolecular hydrogen bond between the C(9)OH proton and the bridgehead nitrogen atom (O···N 283 pm), there is also an interaction of a methylene proton from CH_2Cl_2 with the spiroepoxide oxygen (C···O 321 pm). The microanalytical data obtained (see above) agree well with the formulation of spiroepoxide 6c as a host-guest, CH₂Cl₂ clathrate^[16] (calcd. C 59.42, H 6.18, N 6.60; found C 58.33, H 6.04, N 6.64).

The X-ray crystal structure of unsaturated oxazatricycle (E)-7 (Fig. 2) was in full agreement with the spectroscopic findings. In the mass spectrum the molecular peak ($M^+ = 322$) was also the most intense peak, pointing to a compact cagelike structure, and in accord with a stereoelectronic stabilization of the N,O-acetal group (see above).

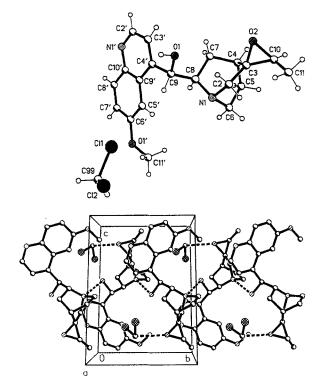


Fig. 1. Top: Crystal structure of $6c \cdot \text{CH}_2\text{Cl}_2$. Bottom: packing diagram (blue: nitrogen; green: chlorine; red: oxygen).

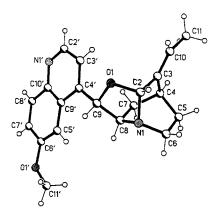


Fig. 2. Crystal structure of (E)-7.

Mechanistic Considerations: In acidic solution the bridgehead nitrogen of amino olefin (Z)-4 is protonated (Scheme 5). Chloramine T functions as a source of solvated chlorine cations $\operatorname{Cl}_{\operatorname{solv}}^+$, which attack the olefinic double bond from either face with generation of cyclic chloronium ion i and ii. Nucleophilic attack by water is assumed to proceed with inversion of configuration and to generate the pair of diastereomeric chlorohydrins iii and iv, respectively. Finally, addition of alkali promotes cyclization to spiroepoxides 6c and 6d, similarly to the final step of the monotosylation-cyclization sequence (cf. Scheme 7).

Note that the transformation of amino olefin (Z)-4 into epoxides $\mathbf{6c}$ and $\mathbf{6d}$ involves two *anti*-oriented steps. Thus, the (Z)-configurated methyl group in diastereomerically pure starting material (Z)-4 retains its configuration in the resulting spiroepoxides $\mathbf{6c}$, \mathbf{d} (Scheme 5). An open, tertiary carbenium ion (instead of the chlorine bridged cation) is unlikely as an intermediate, since in this case spiroepoxide formation would not be stereoselective.

Scheme 5. Possible intermediates in the transformation from diastereomerically pure amino olefin (Z)-4 to spiroepoxides 6c and 6d.

The tricyclic N,O-acetals (E)-7 and (Z)-7 arise from an allyl chloride^[17] v by an $S_N 2'$ displacement with 1,3-chirality transfer. Whereas the olefin configuration of the starting material (Z)-4 is lost in the product [(Z)-7/(E)-7 ca. 1:3], the configuration of the new chiral centre at C(2) is necessarily fixed, since it is generated by an intramolecular $S_N 2'$ reaction.

Illustrative S_N2' Displacement with anti-Stereochemistry

diastereomeric allyl chlorides v

Scheme 6. Loss of olefin configuration in amino olefin (Z)-4 en route to allylic N.O-acetals (E)-7 and (Z)-7.

The stereospecific tosyl chloride—base mediated 1,2-diol \rightarrow epoxide conversion is thought to involve a disciplined functionalization/nucleophilic displacement sequence. Deprotonation of the hindered tertiary hydroxy group requires strong base. For simplicity, the reaction is formulated without the counterions Li⁺ and K⁺ (Scheme 7). Double deprotonation of the diol with the super base is assumed to generate a metal-bridged oxygen dianion vii or its monoanion equivalent. Chemoselective monotosylation at the sterically more accessible secondary site^[18] (vii \rightarrow viii), rotation about the carbon—carbon bond

H R2
R R1

dihydroxylation
syn/s.c.

1,2-diol(s)
$$\longrightarrow$$
 H R R2

 \downarrow Vii

 \downarrow Viii

 \downarrow Viii

 \downarrow Viii

 \downarrow Anti

 \downarrow Anti

 \downarrow R2

 \downarrow R1

 \downarrow Viii

 \downarrow Anti

 \downarrow R2

 \downarrow R1

 \downarrow R2

 \downarrow R3

 \downarrow R1

 \downarrow R1

 \downarrow R2

 \downarrow R1

 \downarrow R2

 \downarrow R3

 \downarrow R1

 \downarrow R1

 \downarrow R1

 \downarrow R2

 \downarrow R3

 \downarrow R1

 \downarrow R1

 \downarrow R1

 \downarrow R2

 \downarrow R3

 \downarrow R1

 \downarrow R1

 \downarrow R1

 \downarrow R2

 \downarrow R3

 \downarrow R1

 \downarrow R1

Scheme 7. Stereospecific tosyl chloride-base mediated 1,2-diol → epoxide conversion.

(viii \rightleftharpoons ix) and intramolecular nucleophilic displacement complete the sequence, with inversion of configuration at the secondary and retention at the tertiary carbon centre. Competing elimination from the secondary tosylate vii was not observed at the temperature range studied ($-78 \,^{\circ}\text{C} \rightarrow \text{RT}$). In fact, secondary tosylate A was isolated as a by-product when less than 2 equivalents of nBuLi/tBuOK were employed (Scheme 8).

Due to the change in mechanism, our method complements the literature procedure^[19] with respect to 1) structural pattern of the diol and 2) overall steric course of the reaction. In fact, the Kolb-Sharpless^[19] reaction proceeds with 1,2-disecondary

Scheme 8. Secondary monotosylate A isolated as a by-product in the preparation of spiroepoxide **6a**-Ac with less than 2 equiv of BuLi/tBuOK.

and 1,2-primary, secondary diols, but is unsatisfactory for crowded diols derived from trisubstituted double bonds. The literature reaction entails a double inversion, that is, overall retention of configuration (rather than inversion) and proceeds under electrophilic conditions via a cyclic acetoxonium (3-dioxolan-2-ylium) cation. [19]

Spiroepoxides **6a** and **6d** have the correct absolute configuration at carbon C(3) to serve as possible precursors of two major quinidine metabolites (Scheme 9). A base-mediated opening of **6d** (and **6a**) would provide allylic alcohol **8**. Nucleophilic epoxide opening of **6d** (and **6a**) by hydride ion at the more accessible secondary carbon would furnish tertiary alcohol **9** with the correct absolute configuration at C(3).

Scheme 9. Spiroepoxide 6d (or 6a) as a precursor of two major quinidine metabolites: allylic alcohol 8 and tertiary alcohol 9.

Conclusions

Synthetic transformations of polyfunctional molecules may often appear to be tedious and low-tech. However, putting a sequence of steps together requires planning and offers the challenge of achieving control, namely, chemo-, regio- and stereocontrol. For example, the basic sites of the alkaloid blunt the reactivity of added electrophiles. Simple practical considerations are also often forgotten, such as solubility and chromatographic behaviour of intermediates, which in the present case was adjusted by protecting groups. The various transformations described are reliable and capable of being scaled up. A variety of further Cinchona derivatives can be expected in the near future.

Experimental Procedure

General Remarks: The numbering of the quinidine skeleton follows the cinchonane/rubane convention for cinchona alkaloids. Melting points: Büchi apparatus, not corrected. Infrared spectra: Perkin-Elmer 1710 spectrometer. ¹H NMR spectra: Bruker WH 90, WP 200SY or AM 300 spectrometer. Chemical shifts are reported in a values relative to tetramethylsilane (TMS) as internal standard. ¹³C NMR spectra: Bruker WP 200SY or a Bruker AM 300. Chemical shifts are reported in a values relative to TMS. APT (attached proton test): spin echo-based selection of multiplicities of ¹³C signals; quaternary C and CH₂ carbon atoms give positive signals (+), while CH and CH₃ give negative signals (-). Low- and high-resolution electron-impact mass spectra: Finnigan MAT 312 spectrometer with an ionization potential of 70 eV at room temperature, unless otherwise stated. Microanalyses were performed in the Department of Organic Chemistry of the University of Hannover. Preparative column chromatography was performed on J. T. Baker silica gel (particle size 30–60 µm). Analytical TLC was carned out on aluminium-backed 0.2 mm silica gel 60 F_{1.54} plates (E. Merck). E (ethyl ether). MTBE (methyl t-butyl ether).

(8R,9S,10S)-10-Bromo-10,11-dihydro-6'-methoxycinchonan-9-ol (2a), (8R,9S,10R)-10-Bromo-10,11-dihydro-6'-methoxycinchonan-9-ol (2b), (8R,9S,10R)-10,11-Dihydro-9,10-epoxy-6'-methoxycinchonane (3a) and (8R,9S,10S)-10,11-Dihydro-9,10-epoxy-6'-methoxycinchonane (3b): To an aqueous solution of HBr (\approx 50 mL, 62%) was added quinidine (20 g, 61.7 mmol) at 0°C. After removal of the ice bath the mixture was stirred for 3 d at RT, then diluted with H₂O (50 mL) and made alkaline with aqueous KOH (25%) (perfusor, 30 mLh $^{-1}$). The aqueous layer was extracted with CHCl₃ and the organic phase dried (MgSO₄). Chromatography (silica gel, MTBE/McO H) afforded 2a and 2b (1.6:1, isolated yield). The seven-membered cyclic ethers 3a and 3b (5:1, 1 H NMR) were also separated.

Data of **2a**: Yield: 12.7 g (51%), m.p. 100 °C (decomp.). [α]₂²⁰ = + 223.8 (c = 1.12 in CHCl₃). IR (KBr): \bar{v} = 1031, 1053, 1112, 1225, 1244, 1326, 1381, 1429, 1455, 1471, 1510, 1591, 1621, 2869, 2941, 3401 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ = 0.996 (m, 1H), 1.8 (m, 2H), 2.2 (m, 3H), 3.05-3.53 (m, 4H; H-2, H-6), 3.76 (s, 3H; H-11'), 4.33 (m, 1H; H-8), 4.56 (m, 1H; H-10), 6.38 (s, 1H; H-9), 6.97 (d, J = 2 Hz, 1H; H-5'), 7.15 (dd J = 2.9 Hz, 1H; H-7'), 7.66 (d, J = 4 Hz, 1H; H-3'), 7.78 (d, J = 9 Hz, 1H, H-8'), 8.63 (d, J = 4 Hz, 1H, H-2'). ¹³C NMR (50 MHz, APT, CDCl₃/CF₃CO₂H): δ = 18.09 (+, C-7, C-5), 24.62, 24.96 (-, C-11), C-4), 44.02 (-, C-3), 49.32, 50.88 (+, C-2, C-6), 53.43 (-, C-10), 55.91 (-, C-11'), 59.48 (-, C-8), 68.26 (-, C-9), 100.26 (-, C-5'), 118.30 (-, C-3'), 122.29 (-, C-7'), 125.85 (+, C-9'), 130.84 (-, C-8'), 143.41, 146.41 (+, C-4', C-10'), 146.83 (-, C-2'), 158.30 (+, C-6'). MS-MAT (260 °C): m/z (%): 406 (13) [M⁺], 404 (13), 326 (22), 325 (56), 324 (18), 202 (14), 189 (13), 173 (13), 172 (27), 160 (13), 159 (14), 137 (100), 122 (38), 94 (34), 84 (55). HRMS calcd. for C₂₀H₂₃N₂O₂Br: 406.1079, found 406.1095. C₂₀H₂₅N₂O₂Br: calcd C 59.39, H 6.23, N 6.93; found C 58.40, H 6.11, N 6.86.

Data for **2b**: Yield: 7.7 g (31 %), m.p. 100 °C (decomp.). $[x]_0^{20} = +118.3$ (c = 0.545 in CHCl₃). IR (KBr): 1030, 1110, 1229, 1243, 1433, 1455, 1472, 1510, 1592, 1622, 2872, 2943, 3403 cm $^{-1}$. HNMR (200 MHz, CDCl₃/CF₃CO₂H): $\delta = 0.998$ (m, 1H), 1.80 (m, 1H). 2.04 (m, 1H), 2.27 (m, 1H), 2.55 (m, 1H; H-4), 3.06-3.44 (m, 4H; H-2, H-6), 3.75 (s, 3H; H-11'), 4.16 (m, 1H; H-8), 4.47 (m, 1H; H-10), 6.37 (s, 1H; H-9), 6.92 (d, J = 2 Hz, 1 H, H-5'), 7.12 (dd, J = 2, 9 Hz, 1 H; H-10), 7.67 (d, J = 4 Hz, 1 H; H-3'), 7.77 (d, J = 9 Hz, 1 H; H-8), 8.57 (d, J = 4 Hz, 1 H; H-2'). 13 C NMR (50 MHz, APT, CDCl₃/CF₃CO₂H): $\delta = 17.31$, 23.44 (+, C-7, C-5), 23.72, 25.62 (-, C-11), 59.80 (-, C-8), 66.21 (-, C-9), 99.44 (-, C-5'), 118.45 (-, C-3'), 123.53 (-, C-7'), 125.35 (+, C-9'), 129.41 (-, C-8'), 141.01, 146.53 (+, C-4', C-10'), 145.20 (-, C-2'), 158.72 (+, C-11'). MS-MAT (250 °C): m/z (%): 406 (7) [M $^+$], 404 (7), 326 (3), 325 (5), 324 (7), 278 (3), 277 (4), 211 (3), 173 (3), 172 (4), 137 (100), 122 (25), 108 (12), 94 (27).

Data for 3a: Yield: 1.9 g (10%). IR (CHCl₃): \bar{v} =1028, 1100, 1132, 1168, 1192, 1232, 1598, 1592, 2496, 2524, 2896, 2944, 3072, 3668 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ =1.47 (d, J = 6 Hz, 3H; H-11), 1.52–1.90 (m, 4H), 2.39 (m, 2 H), 2.83 (m, 1H), 3.2 (m, 2H), 3.47 (d, J = 9 Hz, 1 H), 3.76 (m, 1H), 4.05 (s, 3 H; H-11'), 4.25 (dq, J =1, 6 Hz, 1 H; H-10), 5.95 (s, 1 H; H-9), 7.32 (d, J = 2 Hz, 1 H, H-15'), 7.37 (dd, J =2, 9 Hz, 1 H; H-7'), 7.62 (d, J = 4 Hz, 1 H; H-3'), 8.02 (d, J = 9 Hz, 1 H; H-8'), 8.72 (d, J = 4 Hz, 1 H; H-2') NOE: H-10 with H-9 (0.5), H-11 (5.81), 2.83 (H-3) (3.9), 3.76 (H-2_{endo}) (2.8); H-9 with H-10 (3.3), 3.76 (H-2_{endo}) (8.3), 3.47 (H-8) (3.7); H-11 with H-10 (3.80), 2.39 (H-7) (2.90). ¹³C NMR (50 MHz, APT, CDCl₃): δ = 20.23, 22.03, 37.49 (-, C-11, C-3, C-4), 20.89, 23.49 (+, C-7, C-5), 61.5 (-, C-9), 101.11 (-, C-5'), 117.84 (-, C-3'), 121.30 (-, C-7'), 125.26 (+, C-9'), 131.25 (-, C-8), 143.31, 143.77 (+, C-4', C-10'), 146.90 (-, C-2'), 158.11 (+, C-11'). MS-MAT (270 °C):): m/z (%): 324 (100) [M +1, 309 (25), 295 (34), 281 (15), 265 (12), 252 (11), 241 (16), 226 (12), 215 (11), 210 (13), 187 (21), 159 (17), 138 (57), 122 (34), 111 (42), 95 (30). HRMS calcd. for $C_{20}H_{24}N_2O_2$: 324.1838, found

Data for 3b: Yield: 0.48 g (2%). ¹H NMR (200 MHz, CDCl₃), characteristic signals from mixed spectrum: $\delta = 1.37$ (d, J = 6 Hz, 3H; H-11), 4.08 (s, 3H; H-11'), 4.76 (q, J = 6 Hz, 1H; H-10), 6.29 (s, 1H; H-9).

(8R,9S,10S)-9-Acetoxy-10-bromo-10,11-dihydro-6'-methoxycinchonane (2a-Ac): To a mixture of 2a (4.2 g, 10.3 mmol) and DMAP (125 mg, 1.03 mmol) were added acetic anhydride (10 mL) and pyridine (1.7 mL, 2.1 mmol) at 0 °C. The mixture was stirred for 3 d at RT After removal of the solvent the residue was dissolved in CHCl3 and extracted with sat. aq. NaHCO3. The organic layer was dried (MgSO4), evaporated and chromatographed (MTBE/MeOH) to yield 2a-Ac, 4.35 g (94%), m.p. 139 °C. $[\alpha]_0^{20} = +84.3$ (c = 1.105 in CHCl₃). IR (KBr): $\bar{\nu} = 1028$, 1082, 1229, 1370, 1434, 1476, 1510, 1594, 1622, 1714, 1754, 2508, 2950 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): $\delta = 1.30 - 1.88$ (m, 5H; H-5, H-7, H-3), 1.95 (m, H-4), 1.79 (d, J = 6 Hz, 3H; H-11), 2.18 (s, 3H; H-13), 2.70 (m, 2H; H-6), 2.95 ("d", J = 9 Hz, 2H; H-2), 3.27 (m, 1 H; H-8), 3.98 (s, 3 H; H-11'), 4.40 (m, 1 H, H-10), 6.57 (d, J = 6 Hz, 1 H;H-9), 7.35 (m, 3H; H-3', H-5', H-7'), 8.02 (d, J = 9 Hz, 1H; H-8'), 8.74 (d, J = 4 Hz, 1 H; H-2'). ¹³C NMR (50 MHz, APT, CDCl₃): $\delta = 21.13$ (-, C-13), 22.57, 26.65 (+, C-7, C-5), 25.23, 25.47 (-, C-11, C-4), 45.01 (-, C-3), 49.72, 51.57 (+, C-2, C-6), 55.60 (-, C-11'), 58.88 (-, C-8), 73.38 (-, C-9), 100.88 (-, C-5'), 118.06 (-, C-3'), 122.08 (-, C-7'), 126.90 (+, C-9'), 131.72 (-, C-8'), 143.73, 144.57 (+, C-4', C-10'), 147.32 (-, C-2'), 157.95 (+, C-6'), 169.88 (+, C-12). MS-MAT (110°C): m/z (%): 448/446 (4) [M + + 1], 389 (3), 367 (100), 325 (6), 306 (23), 295 (5), 243 (6), 188 (11), 172 (9), 136 (13). HRMS calcd for C₂₂H₂₇N₂O₃: 367.2022, found 367.2031. C22H27N2O2Br: calcd C 59.18, H 6.10, N 6.28; found C 59.02, H 6.08, N 6.30.

(8R,9S,10R)-9-Acetoxy-10-bromo-10,11-dihydro-6'-methoxycinchonaue (2b-Ac): Compound 2b (3.4 g, 8.35 mmol) was allowed to react as described for 2a-Ac to give 2b-Ac, 3.45 g (92%), m.p. 152 °C. $[\alpha]_0^{20} = +42.0$ (c = 0.50 in CHCl₃). IR (KBr): $\tilde{v} = 1030, 1087, 1234, 1304, 1374, 1453, 1475, 1509, 1593, 1622, 1746, 2873,$ 2943 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): $\delta = 1.42 - 1.83$ (m, 5H; H-5, H-7, H-3), 1.75 (d, J = 6 Hz, 3H; H-11), 2.13 (s, 3H; H-13), 2.32 (m, 1H; H-4), 2.71 (m, 3H),2.95 (m, 1 H), 3.27 (m, 1 H; H-8), 3.95 (s, 3 H; H-11'), 4.31 (m, 1 H; H-10), 6.48 (d, J = 6 Hz, 1 H; H-9), 7.32 (d, J = 4 Hz, 1 H; H-3'), 7.36 (d, J = 2 Hz, 1 H; H-5'),7.38 (dd, J = 2, 9 Hz, 1 H; H-7'), 8.03 (d, J = 9 Hz, 1 H; H-8'), 8.76 (d, J = 4 Hz, 1 H; H-2'). ¹³C NMR (50 MH2, APT, CDCl₃): $\delta = 21.04$ (-, C-13), 22.60, 26.55 (+, C-5, C-7), 24.05, 26.52 (-, C-11, C-4), 45.00 (-, C-3), 48.71, 49.48 (+, C-2, C-6), 52.91(-, C-10), 55.49 (-, C-11'), 58.51 (-, C-8), 73.48 (-, C-9), 101.29 (-, C-5'), 118.47 (-, C-3'), 121.71 (-, C-7'), 126.79 (+, C-9'), 131.81 (+, C-8'), 143.34, 144.65 (+, C-4', C-10'), 147.37 (-, C-2'), 157.85 (+, C-6'), 169.75 (+, C-12). MS-MAT (110 °C): m/z (%): 448 (9)/446 (11) [M^{+}], 403 (3), 396 (4), 387 (5), 367 (100), 351 (4), 324 (14), 306 (77), 295 (10), 264 (11), 243 (16), 202 (15), 188 (20), 172 (22), 136 (30). HRMS called for $C_{22}H_{27}N_2O_3Br$: 446.1205, found 446.1199. C22H27N2O3Br: C 59.18, H 6.10, N 6.28; found C 59.34 H, 6.08, N 6.48.

(8R,9S)-9-Acetoxy-(Z)-3-ethylidene-6'-methoxyrubane [(Z)-4]. To a solution of 2a-Ac (5 g, 11.2 mmol) in anhydrous DMF (15 mL) was added DBU (2.0 mL, 13.4 mmol) dropwise at 100 °C under N2, and the mixture was stirred for 3 h. The solvent was removed (Kugelrohr apparatus), and the residue dissolved in CHCl3. After extraction with H2O the organic layer was dried (MgSO4), evaporated and purified by chromatography through a very short column (MTBE/MeOH) to yield (Z)-4, 3.64 g (89%), m.p. 118 °C. $[\alpha]_D^{20} = +31.7$ (c = 1.06 in CHCl₃), IR (KBr): $\tilde{v} = 1027, 1085, 1231, 1372, 1434, 1474, 1510, 1593, 1622, 1745, 2861, 2936 cm^{-1}$ ¹H NMR (300 MHz, CDCl₃): $\delta = 1.49$ (d, J = 6 Hz, 3H; H-11), 1.58 (m, 2H; H-5), 1.77 (m, 2H; H-7), 2.05 (s, 3H; H-13), 2.35 (m, 1H; H-4), 2.62-2.83 (m, 2H; H-6), $3.22 (d, J = 18 Hz, 1 H; H-2_{exo}), 3.42 (m, 1 H; H-8), 3.67 (d, J = 18 Hz, 1 H; H-2_{endo}),$ 3.93 (s, 3H; H-11'), 5.20 (m, 1H; H-10), 6.47 (d, J = 7 Hz, 1H; H-9), 7.32 (d, J = 4 Hz, 1 H; H-3', 7.33 (dd, J = 2.9 Hz, 1 H; H-7'), 7.43 (d, J = 2 Hz, 1 H; H-5'),7.98 (d, J = 9 Hz, 1H; H-8'), 8.71 (d, J = 4 Hz, 1H; H-2'). NOE: H-4 with H-10 (13.77), H-5 (5.67), H-7 (6.55). ¹³C NMR (75 MHz, DEPT, CDCl₃): $\delta = 12.21$ (1°, C-11), 20.86 (1°, C-13), 27.09, 30.29 (2°, C-7, C-5), 32.99 (3°, C-4), 49.02 (2°, C-2), 50.83 (2°, C-6), 55.48 (1°, C-11'), 58.83 (3°, C-8), 73.83 (3°, C-9), 101.31 (3°, C-5'), 113.40 (3°, C-10), 118.64 (3°, C-3'), 121.70 (3°, C-7'), 126.83 (4°, C-9'), 131.68 (3°,

C-8'), 141.38, 143.59, 144.64 (4°, C-4', C-10', C-3), 147.31 (3°, C-2'), 157.80 (4°, C-6'), 169.83 (4°, C-12). MS-MAT (120 °C): m/z (%): 366 (98) [M^+], 351 (23), 323 (16), 306 (99), 291 (16), 277 (12), 231 (33), 211 (14), 201 (21), 189 (58), 188 (67), 172 (19), 154 (9), 136 (100). HRMS calcd for $C_{22}H_{26}N_2O_3$: 366.1943, found 366.1943. $C_{22}H_{26}N_2O_3$: C, 72.09, H 7.16, N 7.65; found C 72.00, H 7.14, N 7.74.

(8R,9S)-9-Acetoxy-(E)-3-ethylidene-6'-methoxyrubane [(E)-4]: Compound 2b-Ac (2.5 g, 5.6 mmol) was allowed to react as described for (Z)-4 to give (E)-4, 1.68 g (82%), m.p. 82 °C. [α]_D²⁰ = + 20.9 (c = 1.00 in CHCl₃). IR (CHCl₃): \tilde{v} = 1028, 1084, 1240, 1372, 1432, 1472, 1503, 1592, 1620, 1740, 2864, 2952 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): $\delta = 1.62$ (d, J = 6 Hz, 3H; H-11), 1.50–1.93 (m, 4H; H-5, H-7), 2.12 (s, 3H; H-13), 2.63-2.93 (m, 3H; H-4, H-6), 3.18 (d, J = 18 Hz, 1H; $H-2_{exo}$), 3.44 (m, 1H; H-8), 3.73 (d, J = 18 Hz, 1H; H-2_{endo}), 3.98 (s, 3H; H-11'), $5.18 \, (m, 1 \, H; H-10), 6.52 \, (d, J=7 \, Hz, 1 \, H; H-9), 7.36 \, (d, J=4 \, Hz, 1 \, H; H-3'), 7.38 \, (d, J=4 \, Hz, 1 \, H; H-3')$ (dd, J = 2, 9 Hz, 1 H; H-7'), 7.47 (d, J = 2 Hz, 1 H; H-5'), 8.03 (d, $J \approx 9$ Hz, 1 H; H-8'), 8.77 (d, J = 4 Hz, 1H; H-2'). NOE: H-2_{exo} with H-10 (1.2), H-2_{endo} (7.0). ¹³C NMR (50 MHz, APT, CDCl₃): $\delta = 12.63$ (-, C-11), 20.91 (-, C-13), 25.83 (-C-4), 26.38, 29.19 (+, C-7, C-5), 50.50, 51.53 (+, C-2, C-6), 55.55 (-, C-11'), 58.99 (-, C-8), 73.53 (-, C-9), 101.47 (-, C-5'), 113.13 (-, C-10), 118.80 (-, C-3'), 121.79 (-, C-7'), 127.08 (+, C-9'), 131.72 (-, C-8'), 140.23, 143.83, 144.73 (+, C-4', C-10', C-3), 147.38 (-, C-2'), 157.91 (+, C-6'), 169.85 (+, C-12). MS-MAT: m/z (%): 366 (100) [M⁺], 351 (35), 338 (2), 323 (12), 306 (15), 277 (9), 258 (6), 243 (4), 231 (22), 189 (2). HRMS calcd for C₂₂H₂₆N₂O₃: 366.1943, found 366.1925.

(35,8R,9S,10R)-9-Acetoxy-10,11-dihydro-3,10-dihydroxy-6'-methoxycinchonane (5a) and (3R,8R,9S,10S)-9-Acetoxy-10,11-dihydro-3,10-dihydroxy-6'-methoxycinchonane (5b): Variant A: OsO₄ (1.0 mL, 0.1 mmol, 0.1 m solution in tBuOH) was added to a solution of (Z)-4 (3.8 g, 10.4 mmol), DABCO (3.5 g, 31 mmol) and an aqueous solution of NMO (4-methylmorpholine N-oxide) (6.1 mL, 31 mmol, 60%) in THF/H₂O (4:1, 100 mL). After having been stirred for 7 d at RT, the mixture was diluted with CHCl₃ and extracted with sat. aq. NaHSO₃/NaCl (1:1). The organic layer was dried (MgSO₄), the solvent evaporated and the crude product purified by column chromatography (MTBE/MeOH, 15:1, increasing polarity during separation) to afford 5a (1.92 g, 46%), followed by 5b (1.57 g, 38%), (5a:5b = 1.2:1, isolated yield).

Variant B: To a two-phase system of K_2CO_3 (0.47 g, 3.35 mmol), $K_3[Fe(CN_6)]$ (1.12 g, 3.35 mmol) and (Z)-4 (438 mg, 1.2 mmol) in $tBuOH/H_2O$ (1:1) (10 mL) was added OsO₄ (0.12 mL, 0.012 mmol, 0.1 m solution in tBuOH). The mixture was stirred for 3 h at RT and then worked up as described for variant A to give 5a/5b (2.4:1, 1H NMR), 450 mg, 94%.

Data for **5b**: m.p. 68 °C. [α] $_{0}^{20}$ = +7.0 (c =1.00 in MeO H). IR (KBr): \tilde{v} =1231, 1372, 1435, 1475, 1511, 1593, 1623, 1747, 2936, 3442 cm $^{-1}$. ¹H NMR (200 MHz, CD₃OD): δ =1.15 (d, J = 6 Hz, 3 H; H-11), 1.50–1.93 (m, 3 H), 2.21 (m, 1 H), 2.36 (m, 1 H), 2.13 (s, 3 H; H-11'), 2.48 (d, J =15 Hz, 1 H; H-2 $_{exo}$), 2.58–2.88 (m, 2 H; H-6), 3.02 (d, J =15 Hz, 1 H; H-2 $_{endo}$), 3.54 (m, 1 H; H-8), 3.79 (q, J = 6 Hz, 1 H; H-10), 4.01 (s, 3 H; H-11'), 6.76 (d, J = 7 Hz, 1 H; H-9), 7.46 (dd, J = 2 Hz, 1 H; H-7'), 7.57 (d, J = 4 Hz, 1 H; H-3'), 7.70 (d, J = 2 Hz, 1 H; H-5'), 7.98 (d, J = 9 Hz, 1 H; H-8'), 8.68 (d, J = 4 Hz, 1 H; H-2'). ¹³C NMR (50 MHz, CD₃OD): δ =16.18 (-, C-11), 20.86 (-, C-13), 22.07, 24.76 (+, C-7, C-5), 30.37 (-, C-4), 50.51, 55.45 (+, C-2, C-6), 56.34 (-, C-11'), 59.92 (-, C-8), 70.56 (-, C-10), 73.41 (+, C-3), 73.89 (-, C-9), 102.77 (-, C-5'), 120.52 (-, C-3'), 123.58 (-, C-7'), 128.36 (+, C-9'), 131.43 (-, C-8'), 145.01, 145.59 (+, C-4', C-10'). 148.11 (-, C-2'), 159.55 (+, C-6'), 171.49 (+, C-12). MS-MAT (170 °C): m/z (%) = 400 (38) [M *1, 385 (7), 355 (13), 341 (22), 322 (10), 312 (15), 296 (11), 267 (29), 253 (11), 231 (20), 188 (33), 189 (35), 170 (100), 153 (24).

(35,8R,95,10S)-9-Acetoxy-10,11-dihydro-3,10-epoxy-6'-methoxycinchonane (6a-Ac): To a solution of 5a (340 mg, 0.85 mmol) and tBuOK (191 mg, 1.7 mmol) in anhydrous THF (20 mL) was added tBuLi (1.1 mL, 1.7 mmol, 1.6 M solution in hexane) at -78 °C. After 15 min tosyl chloride (324 mg, 1.7 mmol) in anhydrous THF (2 mL) was added, the mixture was allowed to reach RT slowly and then quenched with H_2O . The aqueous layer was extracted with CHCl₃, and the organic layer was dried (MgSO₄). After removal of the solvent the crude product was purified by column chromatography (MTBE/MeO H) to afford 6a-Ac, 283 mg

(87%), m.p.55°C. $[\alpha]_D^{20} = -10.8$ (c = 0.895 in CHCl₃). IR (CHCl₃): $\tilde{v} = 1228$, 1508, 1744, 1592, 1620, 2872, 2960, 3000 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.36 \, (d, J = 5 \, Hz, 3 \, H; H-11), 1.52 \, (m, 1 \, H; H-5), 1.72 \, (m, 1 \, H; H-4), 1.76-1.89$ (m, 3H; H-5, H-7), 2.10 (s, 3H; H-13), 2.59 (d, J = 15 Hz, 1H; H-2_{exo}), 2.78–2.93 (m, 2H; H-6), 2.98 (q, J = 5 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 1H; H-10), 3.34 (m, 1H; H-8), 3.35 (d, J = 15 Hz, 11 H; H-2_{endo}), 3.92 (s, 3 H; H-11'), 6.48 (d, J = 6 Hz, 1 H; H-9), 7.31 - 7.40 (m, 2 H; H-5', H-7'), 7.60 (d, J = 4 Hz, 1H; H-3'), 8.03 (d, J = 9 Hz, 1H; H-8'), 8.75 (d, J = 4 Hz, 1 H; H-2'). NOE: H-9 with H-2_{endo} (s); H-10 with H-2_{endo} (m); H-2_{endo} with H-10 (w), H-2_{exp} (s), H-9 (s). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.87$ (-, C-11), 21.07 (-, C-13), 21.47 (+, C-7), 25.45 (-, C-4), 26.90 (+, C-5), 50.23 (+, C-2), 52.52(+, C-6), 55.66(-, C-11'), 57.81, 59.12(-, C-8, C-10), 63.25(+, C-3), 73.59(-, C-9), 101.37 (-, C-5'), 118.54 (-, C-3'), 121.88 (-, C-7'), 126.85 (+, C-9'), 131.79 (-, C-8'), 143.28, 144.66 (+, C-4', C-10'), 147.32 (-, C-2'), 158.07 (+, C-6'), 169.82 (+, C-12). MS-MAT: m/z (%): $382 (51) [M^+]$, 367 (23), 339 (6), 322(30), 323 (31), 307 (24), 295 (12), 265 (20). HRMS calcd for $C_{22}H_{26}N_2O_4$: 382.1893, found 382.1889.

(35,8R,9S,10R)-9-Acetoxy-10,11-dihydro-3-hydroxy-6'-methoxy-10-tosyloxycinchonane (A): This by-product was obtained when 5a was treated with 1.5 equiv nBuLi and 1.5 equiv /BuOK according the procedure desribed above, m.p. 130 °C (decomp.). $[a]_D^{20} = + 50.7 \ (c = 1.03 \ \text{in CHCl}_3)$. IR (KBr): $\bar{v} = 1033$, 1061, 1084, 1177, 1190, 1244, 1308, 1367, 1510, 1622, 1728, 2941 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): $\delta = 1.22 \ (d, J = 6 \ \text{Hz}, 3 \ \text{H}; H-11)$, 1.80 – 2.00 (m, 5H; H-5, H-7, H-4), 2.10 (s, 3H; H-13), 2.28 (s, 3H; H-7"), 2.57 (d, $J = 15 \ \text{Hz}$, 1H; H-2,20). 2.80 (m, 2H; H-6), 3.08 (d, $J = 15 \ \text{Hz}$, 1H; H-2,210 (m; 1H; H-8), 3.96 (s, 3H; H-11'), 5.32 (q, $J = 6 \ \text{Hz}$, 1H; H-10), 7.01 (d, $J = 8 \ \text{Hz}$, 2H; H-3", H-5"), 7.12 (m, 2H; H-5", H-3"), 7.36 (dd, J = 9, 2 Hz, 1H; H-7'), 7.52 (d, $J = 8 \ \text{Hz}$, 2H; H-2", H-6"), 7.97 (d, $J = 9 \ \text{Hz}$, 1H; H-8'), 8.51 (d, $J = 4 \ \text{Hz}$, H-2'). MS-MAT (170 °C): $m/z \ (\%)$: 554 (6) [M + 1, 496 (7), 495 (13), 494 (32), 479 (5), 382 (20), 339 (12), 321 (66), 307 (21), 279 (11), 265 (100), 251 (15), 225 (13), 188 (14), 172 (19), 152 (71).

(3R,8R,9S,10R)-9-Acetoxy-10,11-dihydro-3,10-epoxy-6'-methoxycinchonane (6b-Ac): Compound 5b (163 mg, 0.32 mmol) was allowed to react as described for **6a** - Ac to give **6b** - Ac, 128 mg (82%), m.p. 52 °C. $|\alpha|_D^{20} = +7.8$ (c = 0.60, CHCl₃). IR (KBr): $\tilde{v} = 1229$, 1510, 1595, 1622, 1745, 2871, 2952 cm⁻¹, ¹H NMR (200 MHz, $CDCl_3$): $\delta = 1.32$ (d, J = 5 Hz, 3H; H-11), 1.60–1.82 (m, 3H), 2.12 (m, 1H), 1.67 (brs, 1H; H-4), 2.18 (s, 3H; H-13), 2.63-2.93 (m, 2H; H-6), 2.68 (d, J=15 Hz, 1 H; H-2_{exo}), 2.98 (q, J = 5 Hz, 1 H; H-10), 3.13 (d, J = 15 Hz, 1 H; H-2_{endo}), 3.37 (m, 1H; H-8), 3.96 (s, 3H; H-11'), 6.58 (d, J = 6 Hz, 1H; H-9), 7.38 (m, 3H; H-5')H-7', H-3'), 8.03 (d, J = 9 Hz, 1H; H-8'), 8.75 (d, J = 4 Hz, 1H; H-2'). NOE: H-9 with H-2_{endo} (5.48); H-10 with H-2_{exp} (3.12). ¹³C NMR (50 MHz, CHCl₃): $\delta = 13.84$ (-, C-11), 21.07 (-, C13), 23.69, 24.85 (+, C-7, C-5), 26.29 (-, C-4), 50.15, 52.29(+, C-2, C-6), 55.68 (-, C-11'), 58.79 (-, C-8), 60.67 (-, C-10), 63.07 (+, C-3), 73.59 (-, C-9), 101.37 (-, C-5'), 118.46 (-, C-3'), 121.95 (-, C-7'), 126.87 (+, C-9'), 131.74 (-, C-8'), 143.74, 144.65 (+, C-4', C-10'), 147.42 (-, C-2'), 157.96 (+, C-6'), 169.93 (+, C-12). MS-MAT $(130 \,^{\circ}C)$: m/z (%): 382 (44) $[M^{+}]$, 367 (10), 339 (5), 323 (13), 306 (5), 265 (7), 189 (12), 188 (15), 172 (11), 152 (100). HRMS calcd for C22H26N2O4: 382.1893, found 382.1900.

(2R,8R,9S)-2,9-Epoxy-(E)-3-ethylidene-6'-methoxyrubane [(E)-7)], (2R,8R,9S)-2,9-Epoxy-(Z)-3-ethylidene-6'-methoxyrubane [(Z)-7], (3S,8R,9S,10R)-10,11-Dihydro-3,10-epoxy-6'-methoxycinchonan-9-ol (6d) and (3R,8R,9S,10S)-10,11-Dihydro-3,10-epoxy-6'-methoxy-cinchonan-9-ol (6c): To a solution of (Z)-4 (15.87 g, 43.4 mmol) and chloramine T trihydrate (12.21 g, 43.4 mmol) in acetone/H₂O (1:1) (200 mL) was added cone. H₂SO₄ (2.31 mL, 43.4 mmol). The mixture was stirred for 1 h at RT, then diluted with MeOH (300 mL) and saturated with K₂CO₃. The mixture was stirred vigorously for 1.5 h. After removal of methanol and acetone the aqueous layer was extracted with CHCl₃. The combined organic layer was dried (MgSO₄), the solvent removed and the crude product purified by chromatography (MTBE/MeOH, 20:1, increasing polarity during separation). First (E/Z)-7 (2.3:1, ¹H NMR) (3.51 g, 25%) was eluted. Crystallization (E) afforded (E)-7 as platelets. Then 6d (2.04 g, 14%) and the most polar compound 6c (2.34 g, 16%) were cluted. Compound 6c was also purified by crystallization (CH₂Cl₂) to give colourless needles.

Data for (E)-7: m.p. 165 °C. $[\alpha]_D^{20} = +402.6$ (c = 1.03 in CH₂Cl₂). IR (CHCl₃): $\tilde{v} = 1088, 1228, 1508, 1620, 2872, 2940 \text{ cm}^{-1}. {}^{1}\text{H NMR} (300 \text{ MHz}, CDCl}_{3})$: $\delta = 1.12$ (m, 1H; H-7), 1.31 (m, 1H; H-7), 1.62 (m 2H; H-5), 1.75 (d, J = 7.5 Hz, 3H; H-11), 2.64 (m, 1H; H-4), 3.07 (m, 1H; H-6_{eq}), 3.28 (m, 1H; H-6_{axial}), 3.97 (s, 3H; H-11'), 4.07 (m, 1H; H-8), 5.17 (s, 1H; H-2), 5.74 (q, J=7.5 Hz, 1H; H-10), 5.83 (d, J = 4 Hz, 1H; H-9), 7.17 (d, J = 2 Hz, 1H; H-5'), 7.42 (dd, J = 2, 9 Hz, 1 H; H-7'), 7.57 (d, J = 4 Hz, 1 H; H-3'), 8.08 (d, J = 9 Hz, 1 H; H-8'), 8.82 (d, J = 4 Hz, 1 H; H-2'). NOE: H-11 with H-4 (8.08). ¹³C NMR (75 MHz, DEPT, CDCl₃): $\delta = 13.02 \, (1^{\circ}, \text{C-}11), 22.57 \, (4^{\circ}, \text{C-}4), 25.65 \, (2^{\circ}, \text{C-}7), 29.47 \, (2^{\circ}, \text{C-}5), 38.41$ (2°, C-6), 55.50 (1°, C-11'), 56.10 (3°, C-8), 79.22 (3°, C-9), 91.45 (3°, C-2), 100.81 (3°, C-5'), 120.02 (3°, C-3'), 120.85 (3°, C-10), 121.28 (3°, C-7'), 126.31 (4°, C-9'), 131.69 (3°, C-8'), 142.53, 142.69, 143.87 (4°, C-3, C-4', C-10'), 147.74 (3°, C-2'), 157.65 (4°, C-6'). MS-MAT (110 °C): m/z (%): 322 (100) [M^+], 307 (23), 293 (19), 279 (13), 264 (72), 251 (47), 237 (27), 212 (44), 198 (25), 183 (48), 167 (26), 136 (21). FAB-MS: m/z (%): 323 (100), 154 (38), 136 (31). HRMS calcd for $C_{20}H_{22}N_2O_2$: 322.1681, found 322.1686. C₂₀H₂₂N₂O₂: C 74.50 H, 6.88, N 8.69; found C 74.54, H 6.88, N 8.61.

Quinidine Derivatives 673~679

Data for (Z)-7: ¹H NMR (200 MHz, CDCl₃), characteristic signals: δ = 1.90 (d, J = 7.5 Hz, 3 H; H-11), 5.51 (s,1 H; H-2), 5.52 (dq, J = 7.5, 1 Hz, 1 H; H-10), 5.82 (d, J = 4 Hz, 1 H; H-9).

Data for **6d**: m.p. $49 \,^{\circ}$ C. $[\alpha]_{D}^{20} = +174.0$ (c = 1.065 in MeOH), IR (CHCl₃): $\tilde{v} = 1240, 1508, 1592, 1620, 2872, 2960, 3400 \text{ cm}^{-1}$. H NMR (200 MHz, CDCl₃): $\delta = 1.25$ (d, J = 5 Hz, 3H; H-11), 1.36–1.50, 1.80–2.22 (m, 4H; H-5, H-7), 1.42 (m, 1 H; H-4), 2.63 (d, J = 15 Hz, 1 H; H-2_{exo}), 2.91 – 3.13 (m, 3 H; H-8, H-6), 3.02 (q, J = 5 Hz, 1H; H-10), 3.6 (brs, 1H; OH), 3.86 (d, J = 15 Hz, 1H; H-2_{endo}), 3.90(s, 3H; H-11'), 5.62 (d, J = 4Hz, 1H; H-9), 7.13 (d, J = 2Hz, 1H; H-5'), 7.32 (dd, J)J = 2,9 Hz, 1H; H-7'), 7.51 (d, J = 4 Hz, 1H; H-3'), 7.98 (d, J = 9 Hz, 1H; H-8'), 8.63 (d, J = 4 Hz, 1 H; H-2'). NOE: H-9 with H-2_{endo} (1.67), H-5' (12.05), H-3' (1.99); H-2_{endo} with H-11 (4.88), H-2_{exo} (17.60), H-9 (1.29). ¹³C NMR (50 MHz, APT, CD₃OD): $\delta = 14.74$ (-, C-11), 21.72 (+, C-7), 23.91 (+, C-5), 32.54 (-C-4), 50.53 (+, C-2), 51.34 (+, C-6), 56.47 (-, C-11), 59.49, 60.45 (-, C-8, C-10), 63.80 (+, C-3), 71.15 (-, C-9), 102.13 (-, C-5'), 119.80 (-, C-3'), 123.38 (-C-7'), 127.72 (+, C-9'), 131.38 (-, C-8'), 144.58, 149.82 (+, C-4', C-10'), 148.08 (-, C-2'), 159.68 (+, C-6'). MS-MAT (170 °C): m/z (%): 340 (35) $[M^+]$, 325 (18), 311 (5), 189 (30), 172 (24), 152 (100), 138 (19). HRMS calcd for C₂₀H₂₄N₂O₃: 340.1787, found 340.1796. C₃₀H₂₄N₂O₃: C 70.55, H 7.11, N 8.23; found C 69.20, H 7.10, N 8.26.

Data for 6c: m.p. 119 °C. $[\alpha]_0^{20} = +114.0$ (c = 0.82 in MeO H). IR (KBr): $\tilde{v} = 1227$, 1242, 1509, 1591, 1622, 2870, 2939, 3408 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.18$ (d, J = 5 Hz, 3 H; H-11), 1.44 (m, 2 H; H-7, H-4), 1.63 (m, 2 H; H-5), 2.31 (m, 1 H; H-7), 2.64 - 2.89 (m, 2 H; H-6), 2.78 (d, J = 15 Hz, 1 H; H-2 $_{exo}$), 3.00 (q, J = 5 Hz, 1 H; H-10), 3.22 (m, 1 H; H-8), 3.42 (d, J = 15 Hz, 1 H; H-2 $_{exo}$), 3.89 (s, 3 H; H-11'), 5.64 (d, J = 4.5 Hz, 1 H; H-9), 7.28 - 7.37 (m, 2 H; H-5', H-7'), 7.53 (d, J = 4 Hz, 1 H; H-3'), 7.98 (d, J = 9 Hz, 1 H; H-8'), 8.68 (d, J = 4 Hz, 1 H; H-2'). NOE: H-11 with H-2 $_{exo}$ (2.05), H-10 (4.83); H-10 with H-11 (8.70), H-4 (5.31); H-2 $_{exo}$ with H-2 $_{exo}$ (7.80), H-9 (3.50); H-9 with H-2 $_{exo}$ (4.60), H-5', H-7' (21.74), H-3' (4.13). 13 C NMR (75 MHz, DEPT, CDCl₃): $\delta = 13.94$ (1°, C-11), 22.06 (2°, C-7), 23.59 (2°, C-5), 31.46 (4°, C-4), 48.31 (2°, C-2), 50.09 (2°, C-6), 55.39 (3°, C-11'), 59.00 (3°, C-8), 59.12 (3°, C-10), 62.96 (4°, C-3), 70.96 (3°, C-9), 100.96 (3°, C-5'), 118.56 (3°, C-3'), 121.71 (3°, C-7'), 126.43 (4°, C-9'), 130.52 (3°, C-8'), 143.43, 148.08 (4°, C-4', C-10'), 146.92 (3°, C-7'), 126.43 (4°, C-9'), 130.52 (3°, C-8'), 143.43, 148.08 (4°, C-4', C-10'), 146.92 (3°, C-7'), 126.43 (4°, C-9'), 130.52 (3°, C-8'), 143.43, 148.08 (4°, C-4', C-10'), 146.92 (3°, C-2'), 157.76 (4°, C-6') MS-MAT (150 °C): m/z (%): 340 (37) [M +], 324 (18), 189 (26), 172 (18), 152 (100), 138 (23). HRMS calcd for $C_{20}H_{24}N_{20}$ 3; 340.1787, found 340.1786. $C_{21}H_{26}N_{20}$ 3.C1; C 59.42, H 6.18, N 6.66; found C 58.33, H 6.04, N 6.64.

Crystallographic Measurements: $6c \cdot \text{CH}_2\text{Cl}_2 \cdot \text{C}_{21}\text{H}_{26}\text{Cl}_2\text{N}_2\text{O}_3$, $M_c = 425.34$, monoclinic, $P2_1$, $a = 992.50\,(8)$, $b = 882.26\,(10)$, $c = 1249.55\,(12)$ pm, $b = 105.332\,(6)^\circ$, Z = 2, $\lambda(\text{Mo}_{\text{Ka}}) = 71.073$ pm, $T = -100\,^\circ\text{C}$. Data collection: colourless prism $0.8 \times 0.5 \times 0.3$ mm, Siemens P4 diffractometer, 3027 reflections (2903 unique) to $2\theta = 55^\circ$. Structure refinement: on F^2 using SHELXL-93 (G. M. Sheldrick, University of Göttingen). H atoms as rigid methyl groups or riding. A weak confirmation of the absolute configuration was provided by the x method (H. D. Flack, Acta Crystallogr. 1983, A39, 876–881); x refined to $0.1\,(2)$. Final $wR(F^2) = 0.198$, conventional R(F) = 0.062, for 256 parameters and 246 restraints; S = 1.00, max. $\Delta \rho = 1211 \text{ e} \text{ nm}^{-3}$ (in solvent region).

(E)-7: $C_{20}H_{22}N_2O_2$, $M_r = 322.40$, orthorhombic, $P2_12_12_1$, a = 778.10(8), b = 1263.1(2), c = 1683.8(2) pm, Z = 4, $T = -100\,^{\circ}$ C. Data collection: colourless prism $0.9 \times 0.45 \times 0.4$ mm, 4187 reflections, 3790 unique, otherwise as above. Structure refinement: As for 6c, but absolute configuration was assumed. Final $wR(F^2)$ 0.091, conventional R(F) = 0.040, for 220 unrestrained parameters; S = 0.95, max. $\Delta \rho = 163 \, \mathrm{enm}^{-3}$.

Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Germany) on quoting the depository numbers CSD-404174 and CSD-404175.

Acknowledgments: We thank Ulrike Eggert and Dr. Jens Bartling for exploratory work and the Fonds der Chemischen Industrie for financial support.

Received: September 1, 1995 [F 202]

- [1] D. C. McHale, The Biologist 1986, 33, 45.
- [2] M. R. Uskokovic, G. Grethe, The Alkaloids, Academic Press, New York, 1973, Vol. 14, 181; R. Verpoorte, J. Schripsema, T. van der Leer, The Alkaloids, Academic Press, New York, 1988, Vol. 34, 331.
- [3] A. D. Malcolm, G. K. David, Acta Leidensia 1987, 55, 87.
- [4] L. Pasteur, C. R. Acad. Sci. 1853, 37, 110.
- [5] R. B. Woodward, W. von E. Doering, J. Am. Chem. Soc. 1945, 67, 860.
- [6] O. Raint, H. B. Kagan, Tetrahedron Lett. 1989, 30, 7403.
- [7] a) H. Wynberg, E. G. J. Staring, J. Am. Chem. Soc. 1982, 104, 166. b) H.
 Wynberg, E. G. J. Staring, J. Org. Chem. 1985, 50, 1977. c) E. G. J. Staring, H.
 Wynberg, H. Mooriag, Recl. Trav. Chim. Pays-Bas 1986, 105, 374. d) H. Wynberg, Top. Stereochem., Wiley's, New York, 1986, 16, 87-129.
- [8] H. U. Basler, S. K. Boyer, U. Pittelkow, Tetrahedron: Asymmetry 1991, 2, 721.
- [9] S. Kobayashi, Y. Tsuchiya, T. Mukaiyama, Chem. Lett. 1991, 541.
- [10] S. Takeuchi, Y. Ohgo, Chem. Lett. 1988, 403.
- [11] A. Sera, K. Takagi, H. Katayama, H. Yamada, K. Matsumoto, J. Org. Chem. 1988, 53, 1157.
- [12] H. C. Kolb, M. S. Van Nieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483.
- [13] a) F. Follath, U. Ganzinger, E. Schuetz, Clin. Pharmacokinet. 1983, 8, 63.
 b) D. E. Drayer, C. E. Cook, M. M. Reidenberg, Clin. Res. 1976, 24, 623 A.
 c) D. E. Drayer, D. T. Lowenthal, K. M. Restivo, A. Schwartz, C. E. Cook, M. M. Reidenberg, Clin. Pharmacol. Ther. 1978, 24, 31. d) H. L. Conn, Jr., R. J. Luchi, Am. J. Med. 1964, 37, 685. e) D. H. Huffman, C. E. Hignite, C. Tschanz, Clin. Res. 1977, 25, 553 A. f) N. H. G. Holford, P. E. Coates, T. W. Guentert, S. Riegelmann, L. B. Sheiner, Br. J. Clin. Pharmacol. 1981, 11, 187.
 g) C. T. Ueda, J. G. Nickols, J. Pharm. Sci. 1980, 69, 1400. h) P. U. Nwangwu, T. L. Holcslaw, H. Rosenberg, L. D. Small, S. J. Stohs, J. Pharm. Pharmacol. 1979, 31, 488.
- [14] a) F. I. Carroll, P. Abraham, K. Gaetano, S. W. Mascarella, R. A. Wohl, J. Lind, K. Petzoldt, J. Chem. Soc. Perkin Trans I 1991, 3017. b) T. A. Henry, W. Solomon, E. M. Gibbs, J. Chem. Soc. 1935, 966.
- [15] Cf. Z. Dega-Szafran, W. Mitura, Bull. Acad. Polon. Sci. Ser. Sci. Chim. 1965, 13, 591; J. Suszko, J. Thiel, Rocz. Chem. Ann. Soc. Chim. Polon. 1974, 48, 1281. The NMR data given by these authors are subject to an offset error (ca. 0.8 ppm).
- [16] D. Worsch, F. Vögtle, Top. Curr. Chem. 1987, 140, 23-41.
- [17] Functionalization of the olefin (Z)-4 with migration of the double bond is expected to provide two diastereomeric allylic chlorides v. The S_N2' reaction is usually not diastereoselective and proceeds with both syn and anti orientation of nucleophile and leaving group. See G. Stork, A. F. Kreft, J. Am. Chem. Soc. 1977, 99, 3850; G. Stork, A. R. Schoofs, ibid. 1979, 101, 5081; R. M. Magid, Tetrahedron 1980, 36, 1901-1930.
- [18] H. M. R. Hoffmann, J. Chem. Soc. 1965, 6748.
- [19] H. C. Kolb, K. B. Sharpless, Tetrahedron 1992, 48, 10515.